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Abstract. Pattern classification is one of the main themes in pattern recognition, and has been tackled
by several methods such as the statistic one, artificial neural networks, mathematical programming
and so on. Among them, the multi-surface method proposed by Mangasarian is very attractive,
because it can provide an exact discrimination function even for highly nonlinear problems without
any assumption on the data distribution. However, the method often causes many slits on the discrim-
ination curve. In other words, the piecewise linear discrimination curve is sometimes too complex
resulting in a poor generalization ability. In this paper, several trials in order to overcome the difficul-
ties of the multi-surface method are suggested. One of them is the utilization of goal programming in
which the auxiliary linear programming problem is formulated as a goal programming in order to get
as simple discrimination curves as possible. Another one is to apply fuzzy programming by which
we can get fuzzy discrimination curves with gray zones. In addition, it will be shown that using the
suggested methods, the additional learning can be easily made. These features of the methods make
the discrimination more realistic. The effectiveness of the methods is shown on the basis of some
applications.

Key words: Multiobjective programming, pattern classification, goal programming, portfolio selec-
tion.

1. Introduction

Machine learning for pattern classification is one of the most important subjects in
artificial intelligence. Several approaches to this topic have been developed so far:
in particular, statistic discrimination analysis, artificial neural networks (ANN),
and the mathematical programming approach are popular in many real fields.

In ANN, the back propagation method is widely applied for learning. However,
unless several parameters are decided upon moderately in advance, it tends to be
trapped in local minima. Moreover, it is a problem how the structure of ANN
should be decided upon [2, 3].

Although statistic discrimination analysis has been developed remarkably, it
requires some assumption on data distribution. This assumption restricts the appli-
cation.

On the other hand, the mathematical programming approach has been attracting
many researcher’s attention due to its applicability to a wide range of real problems
and the simplicity of its algorithm. In particular, the Multisurface Method (MSM)

ICPC: PIPS No.: 139985 MATHKAP
jogoy1.tex; 17/02/1998; 10:11; v.7; p.1
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is very attractive because it is very simple and can provide an exact discrimination
function even for highly nonlinear problems without any assumptions on the data
distribution.

The method finds a piecewise linear discrimination function by solving linear
programming iteratively. One of the most prominent features of MSM is that (1)
there are no parameters to be decided in advance, (2) relatively short computing
time is required, and (3) the resulting solution is guaranteed to be the global
optimal. Wolbeg–Mangasarian [10] reported its good performance in application
to medical diagnosis problems. In addition, MSM can be interpreted to be a method
for constructing cascaded neural networks [6,9].

However, we observed that the method tends to produce too complicated dis-
crimination surfaces, which cause a poor generalization ability because it is affected
by noise. In order to overcome this difficulty, we proposed a multi-objective opti-
mization approach [8]. On the other hand, Benett–Mangasarian proposed a method
called Robust Linear Programming Discrimination (RPLD) whose idea is based
on the goal programming. Although these new methods provide simpler discrimi-
nation functions than by the original MSM, they still lead to too complicated ones
in many cases. This is because they try to find an exact discrimination surface
which classifies all data correctly. It has been observed that such perfect learning
gives a poor generalization ability in many cases. This phenomenon is known as
over-learning.

In order to avoid over-learning, in this paper, we suggest methods which do not
require the perfect classification for given data, but allow unclassified data. This
idea can be performed by applying fuzzy mathematical programming techniques
which produce “gray zones”. The effectiveness of the modified methods can be
proved by several applications to artificial classification problems. Next, these
methods are extended to trinary classification problems. Finally, we apply them to
a stock portfolio problem.

2. Multisurface Method (MSM)

Suppose that given data in a set X of an n-dimensional Euclidean space belong to
one of two categories A and B. Let A be a matrix whose row vectors denote points
of the category A. Similarly, let B be a matrix whose row vectors denote points of
the category B. For simplicity of notation, we denote the set of points of A by A.
Similarly the set of points of B is denoted by B. MSM suggested by Mangasarian
[5] finds a piecewise linear discrimination surface separating two sets A and B
by solving linear programming problems iteratively. The main idea is to find two
hyperplanes parallel to each other which classify as many given data as possible:

g(u) = xTu = �

g(u) = xTu = �

This is performed by the following algorithm:
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Step 1. Solve the following linear programming problem at the k-th iteration (set
k = 1 at the beginning):

(I) Maximize �(A;B) = �� �

subject to Au = �1

Bu 5 �1

�1 5 u 5 1

where 1T = (1; . . . ; 1):

In order to avoid a trivial solution u = 0; � = 0; � = 0, we add a constraint
which is a linear approximation of uTu = 1

2 . Namely,

uTu �= pTp + 2pT (u � p) =
1
2

which finally yields

pTu =
1
2

�
1
2
+ pTp

�
:

Now our problem to be solved is given by

(I0) Maximize �i(A;B) = �� �

subject to Au = �1

Bu 5 �1

�1 5 u 5 1

pTi u = 1
2

�
1
2 + pTi pi

�
(1)

where pi is given by one of

pTi =

�
1p
2
; 0; . . . ; 0

�

pT2 =

�
� 1p

2
; 0; . . . ; 0

�

...

pT2n =
�

0; . . . ; 0;� 1p
2

�
:

After solving the LP problem (I0) for each i such that 1 5 i 5 2n, we take
a hyperplane which classifies correctly as many given data as possible. Let the
solution be u�; ��; ��, and let the corresponding value of the objective function be
��(A;B).
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Figure 1. (a) Data. (b) Classification by MSM.

If ��(A;B) > 0, then we have a complete separating hyperplane g(u�) =
(��+��)=2. Set ~Ak = fx 2 Xjg(u�) = (��+��)=2g and ~Bk = fx 2 Xjg(u�) <
(�� + ��)=2g. ~Ak and ~Bk include the sets A and B in X , respectively, which is
decided at this stage. Go to Step 3.

Otherwise, go to Step 2.

Step 2. First, remove the points such that xTu� > �� from the setA. LetAk denote
the set of removed points. Take the separating hyperplane as g(u�) = (�� + ~�)=2
where ~� = Min fxTu�jx 2 Akg. Let ~Ak = fx 2 Xjg(u�) > (�� + ~�)=2g. The
set ~Ak denotes a subregion of the category A in X which is decided at this stage.
Rewrite Xn ~Ak by X and AnAk by A.

Next, remove the points such that xTu� < �� from the set B. Let Bk denote
the set of removed points. Take the separating hyperplane as g(u�) = (�� + ��)=2
where ~� = Max fxTu�jx 2 Bkg. Let ~Bk = fx 2 Xjg(u�) < (�� + ~�)=2g. The
set ~Bk denotes a subregion of the category B in X which is decided at this stage.
Rewrite Xn ~Bk by X and BnBk by B.

Set k = k + 1 and go to Step 1.

Step 3. Construct a piecewise linear separating hypersurface for A and B by
adopting the relevant parts of the hyperplanes obtained above.

REMARK. At the finalp-th stage, we have the region ofA inX as ~A1[ ~A2[� � �[ ~Ap

and that of B in X as ~B1 [ ~B2 [ � � � [ ~Bp. Given a new point, its classification
is easily made. Namely, since the new point is either one of these subregions in
X , we can classify it by checking which subregion it belongs to in the order of
1; 2; . . . ; p.
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Figure 2. Classification by (II0).

3. Revision by Multi-objective Programming and Goal Programming

3.1. MULTI-OBJECTIVE PROGRAMMING APPROACH

It has been observed that MSM yields sometimes too complex discrimination
hypersurfaces. For example, consider a problem given by Figure 1a. By applying
MSM, we have a too complex discrimination surface as shown in Figure 1b, by
which the classification is very sensitive to the noise of data. One of the reasons
for this phenomenon may be that the discrimination surface is constructed by two
parallel hyperplanes solving a LP problem at each iteration.

In order to overcome the difficulty of MSM, we can consider a hyperplane
which has the set B on its one side and classifies correctly as many points of A as
possible. This is performed by solving the following LP problem:

(II) Maximize Au � �1

subject to Bu � �1 5 0

�1 5 u 5 1

Problem (II) is a multi-objective optimization problem. We can take a scalar-
ization of the linear sum of the objective functions. For this scalarization, we
have

(II0) Maximize
mX
i=1

(y+i � y�i )

subject to Au � �1 = y+ � y�

Bu � �1 5 0

�1 5 u 5 1

y+; y� = 0
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More generally, considering the symmetric role of A and B, we solve another
LP problem in addition to (II0):

(III) Minimize Bu � �1

subject to Au � �1 = 0

�1 5 u 5 1

from which

(III0) Minimize
mX
i=1

(z+i � z�i )

subject to Au � �1 = 0

Bu � �1 = z+ � z�

�1 5 u 5 1

z+; z� = 0

In order to avoid a trivial solution u = 0, y = 0, z = 0, � = 0, � = 0, we add the
constraint (1) to each LP problem above.

At the beginning, set k = 1. LetAk be the set of points ofA such that xTu� > ��

for the solution to (II0), and let nA denote the number of elements ofAk. Similarly,
let Bk be the set of points of B such that xTu� < �� for the solution to (III0), and
let nB denote the number of elements of Bk.

If nA = nB , then we take a separating hyperplane as g(u�) = (��+ ~�)=2 where
�� is the solution to (II0) and ~� = MinfxTu�jx 2 Akg. Let ~Ak = fx 2 Xjg(u�) >
(�� + ~�)=2g. The set ~Ak denotes a subregion of the category A in X which is
decided upon at this stage. Rewrite Xn ~Ak by X and AnAk by A.

If nA < nB , then we take a separating hyperplane as g(u�) = (�� + ~�)=2
where �� is the solution to (III0) and ~� = MaxfxTu�jx 2 Bkg. Let ~Bk = fx 2
Xjg(u�) < (�� + ~�)=2g. The set ~Bk denotes a subregion of the category B in X
which is decided upon at this stage. Rewrite Xn ~Bk by X and BnBk by B.

Setting k = k + 1, solve the problem (II0) and (III0) until we have An ~Ak = ;
and Bn ~Bk = ;.

REMARK. At the finalp-th stage, we have the region ofA inX as ~A1[ ~A2[� � �[ ~Ap

and that of B in X as ~B1 [ ~B2 [ � � � [ ~Bp. Given a new point, its classification is
easily made. Namely, since the new point is either one of these subregion in X , we
can classify it by checking which subregion it belongs to in the order of 1; 2; . . . ; p.

3.2. GOAL PROGRAMMING APPROACH

Unlike the method by multi-objective optimization given above, we can also con-
sider another method obtaining a hyperplane which has one of the sets on its one
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side and minimizes the sum of distances between misclassified data of another set
and the hyperplane at each iteration. This is formulated as goal programming, and
was originally given by Benett–Mangasarian [1], who named it the robust linear
programming discrimination (RLPD). The algorithm is summarized as follows:

In order to minimize the sum of distances between misclassified data in the
class A and the hyperplane by the separating hyperplane, we can solve the linear
programming problem

(IV) Minimize
kX
j=1

yj

subject to �Au + �1 5 y

Bu � �1 5 0

�1 5 u 5 1

y = 0

Similarly, for class B, we have

(V) Minimize
mX
i=1

zi

subject to Au � �1 = 0

Bu � �1 5 z

�1 5 u 5 1

z = 0

In order to avoid a trivial solution u = 0, y = 0, z = 0, � = 0, � = 0, we add
the constraint (1) to each LP problem above. We can make the same procedure as
the multi-objective optimization stated above taking (IV) in place of (II0) and (V)
in place of (III0).

3.3. CLASSIFICATION OF NEW DATA

A point x 2 Rn is classified into A or B as follows: The judgment is made by
hyperplanes obtained as solutions to corresponding LP problems. Suppose that the
given new point is not classified definitely for the first k� 1 hyperplanes, and that
it is classified definitely by the k-th hyperplane (i.e., it is in the subset removed by
the k-th hyperplane).
� If the k-th hyperplane is obtained by solving (II0) or (IV), then the point is

judged to be in A.
� If the k-th hyperplane is obtained by solving (III0) or (V), then the point is

judged to be in B.
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Figure 3. Data of case 1.

Figure 4. MSM (case 1).

Figure 5. RLPD (case 1).
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The result by MSM and RLPD for the data of Figure 3 is given in Figure 4 and
Figure 5, respectively.

4. Application of Fuzzy Mathematical Programming

The multi-objective programming approach and the goal programming approach
make a perfect classification for given teacher’s data as well as MSM. As a result,
we have too complex discrimination surfaces which cause a poor generalization
ability due to the high sensitivity to the noise of data.

In order to overcome this difficulty, we can introduce fuzzy mathematical pro-
gramming into the methods so that some critical points may be unclassified. In the
following, a case for the goal programming approach will be stated.

In problem (IV), the constraints Bu � �1 5 0 may be fuzzified into

Bu � �1 . 0

where. implies “almost5”. The degree of satisfaction of the inequalityBu��1 5
0 can be represented by the membership function MB(x) denoting the degree of
membership of x in B:

MB(x) =

8>>>>>>><
>>>>>>>:

1; �xTu � �

e
= 1

�xTu � �

e
; 0 < �xTu � �

e
< 1

0; �xTu � �

e
5 0

Similarly, the membership function MA(x) of the point x in A is given by

MA(x) =

8>>>>>>><
>>>>>>>:

0; �xTu � �

e
� 1 = 0

xTu � �

e
� 1; �1 <

xTu � �

e
� 1 < 0

�1;
xTu � �

e
� 1 5 �1

Using the usual technique in fuzzy mathematical programming, we have the
following LP problems taking into account the fuzziness stated above:

(VI) Minimize
kX
j=1

yj � w�

subject to �Au + �1 5 y

Bu � �1 + e�1 5 e1

�1 5 u 5 1

y = 0
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Figure 6. Fuzzy RLPD (case 1).

(VII) Minimize
mX
i=1

zi � w�

subject to Au � �1 � e�1 = �e1
Bu � �1 5 z

�1 5 u 5 1

z = 0

REMARK. The parameter e represents the width of the “gray zone” of the separat-
ing hyperplane, and w does the weight for considering the membership function.
The fuzziness of the boundary between the set A and B varies according to the
value of these parameters. They should be decided by users on the basis of their
experiences.

The procedure is the same as in the previous section using (VI) in place of (IV)
and (VII) in place of (V). The result is given in Figure 6.

5. Trinary Classification

For the trinary classification problem with three categories A, B and C, solve a
sequence of binary classification problems:

(1) A0 = A;B0 = B [C
(2) A00 = A [ C;B00 = B

First, solve the binary classification problem with categories A0 and B0 associ-
ated with (1), Next, solve the binary classification problem with categories A00 and
B00 associated with (2).

For a given point x, we judge its category as follows:
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Figure 7. MSM (case 2).

Figure 8. Fuzzy MSM (case 2).

i) if point x is judged to be in A0 and A00, then it is judged to be in A,
ii) if point x is judged to be in b0 and B00, then it is judged to be in B,

iii) if point x is judged to be neither in A nor in B, then it is judged to be in C .

In case with fuzzy mathematical programming, we decide as follows:

i) if point x is judged to be in A0 and A00, then it is judged to be in A,
ii) if point x is judged to be in b0 and B00, then it is judged to be in B,

iii) if point x is in a gray zone, then it is judged to be in a gray zone.
iv) if point x is judged to be neither in A nor in B nor in a gray zone, then it is

judged to be in C .
An example by MSM, RLPD, the fuzzy MSM and the fuzzy RLPD is given in

Figures 7–10.
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Figure 9. RLPD (case 2).

Figure 10. Fuzzy RLPD (case 2).

6. Additional Learning and Application to Portfolio Selection

The obtained discrimination surface follows just the teacher’s data given in advance.
In general, however, when the discrimination surface can not classify additional
new data correctly, it needs to be modified. In other words, machine learning also
needs additional learning like human beings so that it can follow the change of
situation adaptively. In the stated methods, the additional learning can be easily
made by restarting the procedure from the stage at which the new data is misjudged.
The effect of additional learning can be shown along an example of application to
portfolio selection as follows:

Our problem is to judge whether a stock is to be sold or to be bought (in addition,
to be held in the case of trinary classification). Seven economic indices are taken
into account. We have the data in 119 periods in the past for which it is already
known to be sold or to be bought. We obtained a discrimination function by the
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Figure 11. MSM (binary classification).

Figure 12. Fuzzy MSM (binary classification).

stated methods taking the first 50 points as the teacher’s ones, and examined the
ability of classification for the remaining 69 points. The following figures compare
the result without additional learning and with additional learning. Flags with thick
lines represent misclassified data, and those with thin lines represent data in a gray
zone in the fuzzy approach.

It can be seen from Figure 11, for example, that the additional learning of the
mis-classified 52-nd data enables correct judgment for the data until 64-th period
while the method without additional learning misclassified many of them. On the
other hand, many of data after the 99-th period were misclassified by the method
with additional learning, but not by the one without additional learning. One of the
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Figure 13. Fuzzy RLPD (binary classification).

Figure 14. MSM (trinary classification).

reasons for this phenomenon may be that the rule around here is not affected by
the near past, but by the far past. Another reason may be that the discrimination
surface became more and more complex with additional learning. This suggests
the necessity of not only additional learning but also moderate forgetting. This will
be a very attractive subject of machine learning in the future.

7. Concluding Remarks

Throughout our experiments, it has been observed that the effectiveness of the stated
methods depends on problems, although multi-objective programming approaches
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Figure 15. Fuzzy MSM (trinary classification).

Figure 16. Fuzzy RLPD (trinary classification).

including RLDP show in general a tendency providing simpler discrimination
surfaces than the original MSM. In particular, the degree of fuzzification, i.e., the
width of gray zone is sensitive to the parameters e andw, and too many unclassified
data appear depending on their values as was shown in Figure 12. In order to
improve the effectiveness of the fuzzy mathematical programming approach, some
appropriate way for deciding upon these parameters is inevitable and remains a
future subject.
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